์ฝ”์‹œ-๋ฆฌ๋งŒ(Cauchy-Riemann) ๋ฐฉ์ •์‹์€ ๋ณต์†Œ ํ•จ์ˆ˜(Complex Function)์— ๋Œ€ํ•œ ๋ฏธ๋ถ„๊ฐ€๋Šฅ์„ฑ(ํ•ด์„์„ฑ)์„ ์กฐ์‚ฌํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ์ค‘์š”ํ•œ ์ˆ˜ํ•™์  ๋„๊ตฌ์ž…๋‹ˆ๋‹ค. ์ด ๋ฐฉ์ •์‹์€ ๋ณต์†Œ ์ˆ˜ํ•™์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋ฉฐ, ํ•จ์ˆ˜์˜ ํ•ด์„์„ฑ์„ ํŒ๋‹จํ•˜๊ณ  ๋ณต์†Œ ํ‰๋ฉด(Complex Plane)์—์„œ์˜ ํ•ด์„ํ•จ์ˆ˜๋ฅผ ๋‹ค๋ฃจ๋Š” ๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค.

Let (f(z) = u(x, y) + iv(x, y)) be a complex-valued function of a complex variable (z = x + iy), where (u) and (v) are real-valued functions of (x) and (y). Then, the Cauchy-Riemann equations are:

\\begin{align\*} \\frac{\partial u}{\partial x} &= \frac{\partial v}{\partial y} \quad \text{(1)} \\ \\frac{\partial u}{\partial y} &= -\frac{\partial v}{\partial x} \quad \text{(2)} \\end{align\*}

์—ฌ๊ธฐ์„œ:

  • (u(x, y))๋Š” ์‹ค์ˆ˜๋ถ€(Real Part) ํ•จ์ˆ˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • (v(x, y))๋Š” ํ—ˆ์ˆ˜๋ถ€(Imaginary Part) ํ•จ์ˆ˜๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.
  • ๋ฐ ๋Š” ๊ฐ๊ฐ ์™€ ์— ๋Œ€ํ•œ ํŽธ๋ฏธ๋ถ„ ์—ฐ์‚ฐ์ž๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค.

์ฝ”์‹œ-๋ฆฌ๋งŒ ๋ฐฉ์ •์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ค‘์š”ํ•œ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค:

  1. ๋ณต์†Œ ํ•จ์ˆ˜ ๊ฐ€ ํ•ด์„ํ•จ์ˆ˜(๋ฏธ๋ถ„ ๊ฐ€๋Šฅ ํ•จ์ˆ˜)์ธ ๊ฒฝ์šฐ, ์ด ๋ฐฉ์ •์‹์„ ๋งŒ์กฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ฆ‰, ๋ณต์†Œ ํ•จ์ˆ˜๊ฐ€ ๋ณต์†Œ ํ‰๋ฉด ์–ด๋””์—์„œ๋„ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.
  2. ์ฝ”์‹œ-๋ฆฌ๋งŒ ๋ฐฉ์ •์‹์„ ๋งŒ์กฑํ•˜๋Š” ํ•จ์ˆ˜๋Š” โ€œํ•ด์„ํ•จ์ˆ˜โ€๋ผ๊ณ  ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•จ์ˆ˜๋Š” ๋ณต์†Œ ํ‰๋ฉด ์ƒ์˜ ์—ฐ์†์ ์ธ ๊ณก์„  ๊ฒฝ๋กœ๋ฅผ ๋”ฐ๋ผ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๋ฉฐ, ๋ณต์†Œ ํ•ด์„ํ•™(CA, Complex Analysis)์—์„œ ์ค‘์š”ํ•œ ๊ฐœ๋… ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.
  3. ๋ณต์†Œ ํ•จ์ˆ˜์˜ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ์€ ๊ทธ ํ•จ์ˆ˜๊ฐ€ ๋งค์šฐ ๋งค๋„๋Ÿฌ์šด ๋ฐฉ์‹์œผ๋กœ ๋ณ€ํ•˜๋Š” ๊ฒƒ์„ ์˜๋ฏธํ•˜๋ฉฐ, ์ด๋Š” ๋ณต์†Œ ํ‰๋ฉด ์ƒ์˜ ์ปจํˆฌ์–ด ํ”Œ๋กฏ ๋ฐ ๊ฒฝ๋กœ ์ ๋ถ„ ๋“ฑ์„ ๋‹ค๋ฃฐ ๋•Œ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค.

์ฝ”์‹œ-๋ฆฌ๋งŒ ๋ฐฉ์ •์‹์€ ๋ณต์†Œ ํ•จ์ˆ˜์˜ ํ•ด์„์  ํŠน์„ฑ์„ ์ดํ•ดํ•˜๊ณ  ๋ณต์†Œ ์ˆ˜ํ•™์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์ ์šฉ๋˜๋Š” ๊ฐ•๋ ฅํ•œ ๋„๊ตฌ ์ค‘ ํ•˜๋‚˜์ž…๋‹ˆ๋‹ค.