Scalar Function by Scalar

์ด๋•Œ t์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด,

์ด๋ฅผ ๋ฒกํ„ฐ ํ˜•์‹์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋ฉด,

{df\over dt};=;\begin{bmatrix} {\partial f\over \partial q_1} & {\partial f\over \partial q_2} & \dots & {\partial f\over \partial q_n}\\ \\end{bmatrix} \\begin{bmatrix} {dq_1\over dt}\\ {dq_2\over dt}\\ \vdots \\{dq_n\over dt}\\ \\end{bmatrix} +{\partial f \over \partial t}\\

์—ฌ๊ธฐ์„œ ๋ฒกํ„ฐ๋กœ ํ‘œํ˜„๋œ ๋…€์„์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•˜์ž.

\\begin{bmatrix} {\partial f\over \partial q_1} & {\partial f\over \partial q_2} & \dots & {\partial f\over \partial q_n}\\ \\end{bmatrix}={\partial f \over \partial \overset{\rightarrow}{q}}=f\_{\overset{\rightarrow}{q}}

๊ทธ๋ ‡๋‹ค๋ฉด ์œ„์˜ ์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์ •๋ฆฌ๋œ๋‹ค.

Vector Function by Scalar

๋ฒกํ„ฐํ•จ์ˆ˜ f๋Š” ๊ฐ๊ฐ์˜ ์š”์†Œ์— ๋ณ€์ˆ˜ (q1~qn, t) ๋ฅผ ๊ฐ–๋Š” ์Šค์นผ๋ผ ํ•จ์ˆ˜๋ฅผ m๊ฐœ ๊ฐ–๋Š”๋‹ค๊ณ  ํ•˜์ž.

f_1;=;f_1(q_1,q_2,\dots,q_n,t)\\ f_2;=;f_1(q_1,q_2,\dots,q_n,t)\\ f_3;=;f_1(q_1,q_2,\dots,q_n,t)\\ \\vdots\\ f_m;=;f_n(q_1,q_2,\dots,q_n,t)\\ ;\\ ;\\ \\overset{\rightarrow}{f};=;\[f_1;f_2;f_3;\dots;f_m\]^T

๊ทธ๋ ‡๋‹ค๋ฉด ์ด ํ•จ์ˆ˜๋ฅผ ์Šค์นผ๋ผ ๋ณ€์ˆ˜ t๋กœ ๋ฏธ๋ถ„ํ•˜๋ฉด,

๊ฐ๊ฐ์˜ ์š”์†Œ๋Š”,

{\partial f_j \over \partial \overset{\rightarrow}{q}}= \\begin{bmatrix} {\partial f_j\over \partial q_1} & {\partial f_j\over \partial q_2} & \dots & {\partial f_j\over \partial q_n}\\ \\end{bmatrix}

๊ทธ๋ ‡๋‹ค๋ฉด, ๋ฒกํ„ฐ ํ•จ์ˆ˜๋ฅผ t๋กœ ๋ฏธ๋ถ„ํ•œ ์ตœ์ข… ๊ฒฐ๊ณผ๋Š”,

{d\overset{\rightarrow}{f} \over dt};=;\begin{bmatrix} {df_1\over dt}\\ {df_2\over dt}\\ \vdots \\{df_n\over dt}\\ \\end{bmatrix};= \\begin{bmatrix} {\partial f_1\over \partial q_1} & \dots & {\partial f_1\over \partial q_n} \\\vdots\ & & \vdots\\ {\partial f_m\over \partial q_1} & \dots & {\partial f_m\over \partial q_n}\\ \\end{bmatrix} \\begin{bmatrix} {dq_1\over dt}\\ \vdots \\{dq_n\over dt}\\ \\end{bmatrix} +\begin{bmatrix} {df_1 \over dt}\\ \vdots \\{df_m \over dt}\\ \\end{bmatrix} \\

์—ฌ๊ธฐ์„œ ํ–‰๋ ฌ์ด ๋งŒ๋“ค์–ด์ง„๋‹ค๋Š” ๊ฒƒ์„ ์žŠ์œผ๋ฉด ์•ˆ๋œ๋‹ค! ๊ฐ๊ฐ์˜ ํฌ๊ธฐ๋งŒ ์ ์–ด๋ณด๋ฉด,

Scalar Function by Vector

์Šค์นผ๋ผ ํ•จ์ˆ˜๋ฅผ ์Šค์นผ๋ผ๋กœ ๋ฏธ๋ถ„ํ•˜๋Š” ๊ฐ€์žฅ ์œ„์˜ ์˜ˆ์—์„œ, ํ•จ์ˆ˜ f๋ฅผ ๋ฒกํ„ฐ q๋กœ ๋ฏธ๋ถ„ํ•˜๋ฉด, ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

{d f \over d\overset{\rightarrow}{q}};=;\begin{bmatrix} {d f\over d q_1} & {d f\over d q_2} & \dots & {d f\over d q_n}\\ \\end{bmatrix}

Vector Function by Scalar

๋ฒกํ„ฐ ํ•จ์ˆ˜๋ฅผ ์Šค์นผ๋ผ๋กœ ๋ฏธ๋ถ„ํ•˜๋Š” ๋‘๋ฒˆ์งธ ์˜ˆ์—์„œ, ๋ฒกํ„ฐ ํ•จ์ˆ˜ f๋ฅผ q1์œผ๋กœ ๋ฏธ๋ถ„ํ•œ๋‹ค๋ฉด,

{d\overset{\rightarrow}{f} \over dq_1};=;\begin{bmatrix} {d f_1\over d q_1} & {d f_1\over d q_1} & \dots & {d f_1\over d q_1}\\ \\end{bmatrix}

์ •๋ฆฌ

  1. ์Šค์นผ๋ผ ํ•จ์ˆ˜๋ฅผ ์Šค์นผ๋ผ๋กœ ๋ฏธ๋ถ„ํ•˜๋ฉด ์Šค์นผ๋ผํ•จ์ˆ˜๋‹ค.
  2. ์Šค์นผ๋ผ ํ•จ์ˆ˜๋ฅผ ๋ฒกํ„ฐ ํ•จ์ˆ˜๋กœ ๋ฏธ๋ถ„ํ•˜๋ฉด 1xn ๋ฒกํ„ฐ๊ฐ€ ๋‚˜์˜จ๋‹ค.
  3. ๋ฒกํ„ฐ ํ•จ์ˆ˜๋ฅผ ์Šค์นผ๋ผ๋กœ ๋ฏธ๋ถ„ํ•˜๋ฉด 1xm ๋ฒกํ„ฐ๊ฐ€ ๋‚˜์˜จ๋‹ค.
  4. ๋ฒกํ„ฐ ํ•จ์ˆ˜๋ฅผ ๋ฒกํ„ฐ๋กœ ๋ฏธ๋ถ„ํ•˜๋ฉด nxm ํ–‰๋ ฌ์ด ๋‚˜์˜จ๋‹ค.

Skew-Symmetric Matrix Representation

Skew-Symmetric Matrix๋Š” ๋ฒกํ„ฐ์˜ ์™ธ์ ์„ ์‚ฌ์šฉํ•ด์„œ ๋‹ค๋ฅด๊ฒŒ ํ‘œํ˜„์ด ๊ฐ€๋Šฅํ•œ๋ฐ, ๊ฐ„๋‹จํ•œ ์˜ˆ๋ฅผ ๋“ค์–ด ์ƒ๊ฐํ•ด๋ณด์ž.

\\overset{\rightarrow}{a} ;=;\[a_1;a_2;a_3\]^T\\ \\overset{\rightarrow}{b} ;=;\[b_1;b_2;b_3\]^T\\

์ด ๋‘ ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ ํ•˜๋ฉด,

\\overset{\rightarrow}{a}\times\overset{\rightarrow}{b};=; \\begin{bmatrix} a_2b_3-a_3b_2\\ -(a_1b_3-a_3b_1)\\ a_1b_2-a_2b_1 \\end{bmatrix} =\begin{bmatrix} 0 & -a_3 & a_2\\ a_3 & 0 & -a_1\\ -a_2 & a_1 & 0 \\end{bmatrix} \\begin{bmatrix} b_1\\ b_2\\ b_3 \\end{bmatrix};=; { { \underset{=} {\overset{\sim}{a} } } } \cdot \overset{\rightarrow}{b}

์™ธ์  ์‹์„ b๋ฒกํ„ฐ๋ฅผ ํ™œ์šฉํ•ด์„œ ๋‚˜ํƒ€๋‚ด๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋‚˜ํƒ€๋‚ผ ์ˆ˜ ์žˆ๋‹ค. ์ด๋•Œ ์ค‘๊ฐ„์— skew-symmetric matrix ๊ฐ€ ๋‚˜์˜ค๊ณ , a ๋ฒกํ„ฐ๊ฐ€ ์™ผ์ชฝ์— ๋†“์ธ ์™ธ์ ์„ ์ˆ˜ํ–‰ํ–ˆ์„ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ํ–‰๋ ฌ์„ ์œ„์™€ ๊ฐ™์ด ํ‘œํ˜„ํ–ˆ๋‹ค. ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ, b๋ฒกํ„ฐ์— ๋Œ€ํ•ด ํ•˜๋ฉด,

\\overset{\rightarrow}{a}\times\overset{\rightarrow}{b};=;\begin{bmatrix} 0 & -b_3 & b_2\\ b_3 & 0 & -b_1\\ -b_2 & b_1 & 0 \\end{bmatrix} \\begin{bmatrix} a_1\\ a_2\\ a_3 \\end{bmatrix};=; { { \underset{=} {\overset{\sim}{b} } } } \cdot \overset{\rightarrow}{a}

์ด์™€ ๊ฐ™๋‹ค.

Property

a ์˜ ๋‹จ์œ„๋ฒกํ„ฐ์™€ a ๋ฒกํ„ฐ๋ฅผ ์™ธ์ ํ•˜๋ฉด, 0์ด๋‹ค.

์ด ํ‘œํ˜„์„ Skew-symmetric Matrix๋ฅผ ์จ์„œ ํ‘œํ˜„ํ•˜๋ฉด,

Skew-Symmetric Matrix ์˜ ํŠน์ง•์„ ์‚ฌ์šฉํ•˜๋ฉด,

์—ญํ•™์—์„œ ์‚ฌ์šฉ์˜ˆ

์‹œ์Šคํ…œ ๋‚ด์—์„œ ์—ญํ•™์  Joint ์—์„œ ์œ„์น˜ ๋ฒกํ„ฐ์™€์˜ ๊ด€๊ณ„๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋นˆ๋ฒˆํ•˜๊ฒŒ ๋ฌ˜์‚ฌ๋œ๋‹ค.

์ฆ‰, a ๋ฒกํ„ฐ์™€ x ๋ฒกํ„ฐ๊ฐ€ ์ˆ˜์ง์ž„์„ ๋‚˜ํƒ€๋‚ธ๋‹ค. ์ˆ˜์ง์ธ ๋ฒกํ„ฐ๋Š” ๋ฌด์ˆ˜ํ•˜๊ฒŒ ๋งŽ์ด ๋‚˜์˜จ๋‹ค๋Š” ์ ์„ ๊ธฐ์–ตํ•œ ์ƒํƒœ๋กœ ๋‹ค์Œ์„ ๋ณด์ž. Skew-symmetric Matrix๋ฅผ ์‚ฌ์šฉํ•ด์„œ ๋‚˜ํƒ€๋‚ด๋ฉด,

{ { \underset{=} {\overset{\sim}{a} } } } \cdot \overset{\rightarrow}{x};=;\overset{\rightarrow}{0}\\ ;\\ ;\\ { { \underset{=} {\overset{\sim}{a} } } };=; \\begin{bmatrix} 0 & -a_3 & a_2\\ a_3 & 0 & -a_1\\ -a_2 & a_1 & 0 \\end{bmatrix}

a ํ–‰๋ ฌ์— ๋Œ€ํ•ด Determinant๋ฅผ ๊ตฌํ•ด๋ณด๋ฉด, 0์ด๋‹ค. ์ฆ‰, a ํ–‰๋ ฌ์€ ํŠน์ด ํ–‰๋ ฌ์ด๋‹ค. ์ฆ‰, Rank๊ฐ€ matrix size๋ณด๋‹ค ์ž‘๋‹ค. ์ฆ‰, x ๋ฒกํ„ฐ๋Š” ํ•˜๋‚˜๋กœ ๊ฒฐ์ •๋˜์ง€ ๋ชปํ•œ๋‹ค.