MNIST Dataset # Lab 7 Learning rate and Evaluation import tensorflow as tf import matplotlib.pyplot as plt import random tf.set_random_seed(777) # for reproducibility # ํ ์ํ๋ก์ฐ์์ ๋ฐ์ดํฐ ๋ฐ์์ค๊ธฐ from tensorflow.examples.tutorials.mnist import input_data # Check out https://www.tensorflow.org/get_started/mnist/beginners for # more information about the mnist dataset mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) nb_classes = 10 # MNIST data image of shape 28 * 28 = 784 X = tf.placeholder(tf.float32, [None, 784]) # 0 - 9 digits recognition = 10 classes Y = tf.placeholder(tf.float32, [None, nb_classes]) W = tf.Variable(tf.random_normal([784, nb_classes])) b = tf.Variable(tf.random_normal([nb_classes])) # Hypothesis (using softmax) hypothesis = tf.nn.softmax(tf.matmul(X, W) + b) cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1)) train = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost) # Test model is_correct = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32)) # parameters num_epochs = 15 batch_size = 100 num_iterations = int(mnist.train.num_examples / batch_size) with tf.Session() as sess: # Initialize TensorFlow variables sess.run(tf.global_variables_initializer()) # Training cycle for epoch in range(num_epochs): avg_cost = 0 for i in range(num_iterations): batch_xs, batch_ys = mnist.train.next_batch(batch_size) _, cost_val = sess.run([train, cost], feed_dict={X: batch_xs, Y: batch_ys}) # ๊ฐ epoch ๋ง๋ค ํ๊ท ๋น์ฉ์ ๊ตฌํ๋ ค๋ฉด, 2๋ฒ์งธ ๊ฐ์ ๋ํ ํ 2๋ฒ์งธ iteration์ผ๋ก ๋๋ ์ค์ผ ํ๋ค. avg_cost += cost_val / num_iterations print("Epoch: {:04d}, Cost: {:.9f}".format(epoch + 1, avg_cost)) print("Learning finished") # Test the model using test sets # sess.run() ๋ง๊ณ ๋ค๋ฅธ ๋ฐฉ๋ฒ์ผ๋ก ๋ ธ๋๋ฅผ ์คํํ๋ ๋ฒ # ๋ ธ๋์๋ค๊ฐ, .eval() ์ด๋ผ๋ ํจ์๋ฅผ ํธ์ถํ๋ฉด ๋๋ค. print( "Accuracy: ", accuracy.eval( session=sess, feed_dict={X: mnist.test.images, Y: mnist.test.labels} ), ) ''' Epoch: 0001, Cost: 2.826302672 Epoch: 0002, Cost: 1.061668952 Epoch: 0003, Cost: 0.838061315 Epoch: 0004, Cost: 0.733232745 Epoch: 0005, Cost: 0.669279885 Epoch: 0006, Cost: 0.624611836 Epoch: 0007, Cost: 0.591160344 Epoch: 0008, Cost: 0.563868987 Epoch: 0009, Cost: 0.541745171 Epoch: 0010, Cost: 0.522673578 Epoch: 0011, Cost: 0.506782325 Epoch: 0012, Cost: 0.492447643 Epoch: 0013, Cost: 0.479955837 Epoch: 0014, Cost: 0.468893674 Epoch: 0015, Cost: 0.458703488 Learning finished Accuracy: 0.8951 ''' Training epoch/batch epoch ์ ์ฒด ๋ฐ์ดํฐ ์ ์ ํ๋ฒ ํ๋ จํ ๊ฒ batch ์ ์ฒด ๋ฐ์ดํฐ์ ์ ๋ฉ๋ชจ๋ฆฌ์ ์ฌ๋ ค ํ๋ฒ์ ํ๋ จํ๊ธฐ ์ด๋ ค์ฐ๋ฏ๋ก, ์ด ๋ ์์ ์๋ผ์ ์ฌ์ฉํ๋ ๋จ์ Example ์ ์ฒด ๋ฐ์ดํฐ๊ฐ 1000 ๊ฐ์ด๋ค. 1 epoch๋ฅผ ๋๋ฆฌ๊ธฐ ์ํด์๋ batch_size 500์ผ๋ก 2๋ฒ์ ๋ฐ๋ณต์ด ํ์ํ๋ค.