์ขŒํ‘œ๊ณ„์˜ ํšŒ์ „ ๋ณ€ํ™˜

i๋ฒˆ์งธ์—์„œ ์ •์˜๋œ ์ขŒํ‘œ๊ณ„๋Š”, ๋‚ด๊ฐ€ ์›ํ•˜๋Š” global ์ขŒํ‘œ๊ณ„์—์„œ ์ขŒํ‘œ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๊ด€๊ณ„๋ฅผ ๊ฐ–๋Š”๋‹ค.

\\begin{bmatrix} x_p\\ y_p \\end{bmatrix};=; \\begin{bmatrix} cos\theta & -sin\theta\\ sin\theta & cos\theta\\ \\end{bmatrix} \\begin{bmatrix} x_p^i\\ y_p^i \\end{bmatrix}

์ด ํ–‰๋ ฌ์„ A๋ผ ์ •์˜ํ•˜์ž.

A^i;=;\begin{bmatrix} cos\theta & -sin\theta\\ sin\theta & cos\theta\\ \\end{bmatrix}

์œ„์น˜ ๋ฒกํ„ฐ์˜ ํ‘œํ˜„

๋‹ค์Œ๊ณผ ๊ฐ™์ด global ์ขŒํ‘œ๊ณ„๊ฐ€ ์žˆ๊ณ , ํŠน์ • body์—์„œ ์ •์˜๋œ ์ขŒํ‘œ๊ณ„๊ฐ€ ์žˆ์„ ๋•Œ, ์šฐ๋ฆฌ๋Š” ์ด ๋‘ ์ขŒํ‘œ๊ณ„๋ฅผ ๋ณ€ํ™˜ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. global ์ขŒํ‘œ๊ณ„์—์„œ body์˜ ์›€์ง์ž„์„ ์•Œ๊ณ  ์‹ถ๋‹ค. ๊ฐ•์ฒด๋ผ ๊ฐ€์ •ํ•˜๊ณ , body์˜ ์ขŒํ‘œ๊ณ„์—์„œ ์ค‘์‹ฌ์ ์ด ๋˜๋Š” ๊ณณ์„ ์šฐ๋ฆฌ๋Š” reference point ๋ผ ๋ถ€๋ฅธ๋‹ค. ๋˜ ๊ทธ๊ณณ์—์„œ ์ •์˜๋˜๋Š” ์ขŒํ‘œ๊ณ„๋ฅผ body frame, local coordinate ๋ผ ํ•œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  global ์ขŒํ‘œ๊ณ„์˜ ์ค‘์‹ฌ์ด ๋˜๋Š” ๊ณณ์„ reference frame ์ด๋ผ ๋ถ€๋ฅผ ๊ฒƒ์ด๋‹ค. ์ด ๋‘์ขŒํ‘œ๊ณ„๋ฅผ ๋ณ€ํ™˜ํ•˜๋Š” ๊ด€๊ณ„์‹์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

์ด ํ‘œ๊ธฐ๋ฒ•์„ ๋ง๋กœ ์ •์˜ํ•ด๋ณด๋ฉด, global ์ขŒํ‘œ๊ณ„์—์„œ ํ‘œํ˜„๋œ p์ ์˜ ๋ฒกํ„ฐ ๋Š”, reference point๊นŒ์ง€์˜ ๋ฒกํ„ฐ ์™€ reference point๋กœ ๋ถ€ํ„ฐ global ์ขŒํ‘œ๊ณ„์—์„œ ํ‘œํ˜„๋œ ํŠน์ • ์œ„์น˜์˜ ๋ฒกํ„ฐ ๋ฅผ ๋”ํ•œ ๊ฒƒ์ด๋‹ค. ๋ผ๋Š” ์˜๋ฏธ์ด๋‹ค. ์ด ๋•Œ, reference point๋กœ ๋ถ€ํ„ฐ global ์ขŒํ‘œ๊ณ„์—์„œ ํ‘œํ˜„๋œ ํŠน์ • ์œ„์น˜์˜ ๋ฒกํ„ฐ๋Š” local coordinate ๋กœ ๋ถ€ํ„ฐ global coordinate ๋กœ ํšŒ์ „ ๋ณ€ํ™˜ ํ•œ ๊ฒƒ์ด๋ฏ€๋กœ,

์—ฌ๊ธฐ์„œ ๋งจ ์˜ค๋ฅธ์ชฝ์— ํ‘œํ˜„๋œ term์€, local coordinate์—์„œ ํ‘œํ˜„๋œ ํŠน์ • ์ขŒํ‘œ์ด๋‹ค.

์†๋„ ๋ฒกํ„ฐ์˜ ํ‘œํ˜„

์œ„์น˜๋ฒกํ„ฐ๋ฅผ ๋ฏธ๋ถ„ํ•˜๋ฉด, ์–ป์„ ์ˆ˜ ์žˆ๋‹ค.

์—ฌ๊ธฐ์„œ ์˜๋ฏธ๋ฅผ ํŒŒ์•…ํ•ด๋ณด๋ฉด, ์‹œ๊ฐ„์— ํ๋ฆ„์— ๋”ฐ๋ผ, Rigid body assumption ์— ์˜ํ•ด local coordinate ์•ˆ์—์„œ p์ ์˜ ์†๋„๋Š” 0์ด๋‹ค. ๋”ฐ๋ผ์„œ ๋งˆ์ง€๋ง‰ ํ•ญ์€ 0์ด๋‹ค.

์—ฌ๊ธฐ์„œ ํ–‰๋ ฌ ๋ฏธ๋ถ„์„ ์ƒ๊ฐํ•ด๋ณด๋ฉด, A๋Š” theta ๋งŒ์˜ ํ•จ์ˆ˜์ด๋ฏ€๋กœ ์ด๋…€์„์„ ์‹œ๊ฐ„ t์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•˜๋ฉด, chain rule ์— ์˜ํ•ด,

์ด๋ ‡๊ฒŒ ํ‘œํ˜„๋˜๊ณ , A๋ฅผ theta์— ๋Œ€ํ•ด ๋ฏธ๋ถ„ํ•œ ํ–‰๋ ฌ์€,

A^i\_{,\theta};=;\begin{bmatrix} -sin\theta^i & -cos\theta^i\\ cos\theta^i & -sin\theta^i\\ \\end{bmatrix}

Transform to Cross product form

๊ฒฐ๊ณผ์ ์œผ๋กœ, ๊ฐ•์ฒด์—์„œ ์†๋„ ๋ฒกํ„ฐ๋Š”,

2D์—์„œ ๊ฐ์†๋„ ๋ฒกํ„ฐ๋Š”,

\\overset{\rightarrow}{\omega}^i;=;\overset{\cdot}{\theta^i}\hat{k};=;\[0;;;;0;;;;\overset{\cdot}{\theta^i}\]^T

์ด ๋•Œ,

\\overset{\cdot}{\theta^i}A^i\_{,\theta} \overset{\rightarrow}{\overset{-}{u_p} }^i;=; \\overset{\cdot}{\theta^i} \\begin{bmatrix} -sin\theta^i & -cos\theta^i\\ cos\theta^i & -sin\theta^i\\ \\end{bmatrix} \\begin{bmatrix} \\overset{-}{x_p}^i\\ \\overset{-}{y_p}^i\\ \\end{bmatrix} ;=; \\overset{\cdot}{\theta^i}\begin{bmatrix} -\overset{-}{x_p}^isin\theta^i-\overset{-}{y_p}^icos\theta^i\\ \\overset{-}{x_p}^icos\theta^i-\overset{-}{y_p}^isin\theta^i \\end{bmatrix}

๋กœ ์ •๋ฆฌ๋  ์ˆ˜ ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ Up ๋ฒกํ„ฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„ ๋  ์ˆ˜ ์žˆ๋‹ค.

\\overset{\rightarrow}{ {u_p} }^i; =;A^i\overset{\rightarrow}{\overset{-}{u_p} }^i;=; \\begin{bmatrix} cos\theta^i & -sin\theta^i\\ sin\theta^i & cos\theta^i\\ \\end{bmatrix} \\begin{bmatrix} \\overset{-}{x_p}^i\\ \\overset{-}{y_p}^i\\ \\end{bmatrix} ;=;\begin{bmatrix} \\overset{-}{x_p}^icos\theta^i-\overset{-}{y_p}^isin\theta^i\\ \\overset{-}{x_p}^isin\theta^i+\overset{-}{y_p}^icos\theta^i \\end{bmatrix} ;=; \\begin{bmatrix} u_x^i\\ u_y^i\\ \\end{bmatrix}

๊ฐ์†๋„ ๋ฐฑํ„ฐ์™€ Up ๋ฒกํ„ฐ๋ฅผ ๋‚ด์ ํ•˜๋ฉด,

\\overset{\rightarrow}{\omega}^i\times\overset{\rightarrow}{ {u_p} }^i;=; \\begin{vmatrix} \\hat{i} & \hat{j} & \hat{k} \\ 0 & 0 & \overset{\cdot}{\theta^i}\\ u_x^i & u_y^i & 0 \\end{vmatrix} \\ ;\\ ;=; \\begin{vmatrix} 0 & \overset{\cdot}{\theta^i} \\ u_y^i & 0 \end{vmatrix}\hat{i} -\begin{vmatrix} 0 & \overset{\cdot}{\theta^i} \\ u_x^i & 0 \end{vmatrix}\hat{j} +\begin{vmatrix} 0 & 0 \\ u_x^i & u_y^i \end{vmatrix}\hat{k}\\ ;\\ ;=;-\overset{\cdot}{\theta^i}u_y^i\hat i;+;\overset{\cdot}{\theta^i}u_x^i\hat j \\ ;\\ ;\\

์ด ์‹์„ ํ–‰๋ ฌ์‹์œผ๋กœ ํ‘œํ˜„ํ•˜๋ฉด,

\\overset{\cdot}{\theta^i}\begin{bmatrix} -u_y^i\\ u_x^i\\ \\end{bmatrix};=; \\overset{\cdot}{\theta^i}\begin{bmatrix} -\overset{-}{x_p}^isin\theta^i-\overset{-}{y_p}^icos\theta^i\\ \\overset{-}{x_p}^icos\theta^i-\overset{-}{y_p}^isin\theta^i \\end{bmatrix};=;\overset{\cdot}{\theta^i}A^i\_{,\theta} \overset{\rightarrow}{\overset{-}{u_p} }^i

๋”ฐ๋ผ์„œ,

Summary

๊ฒฐ๋ก ์ ์œผ๋กœ ์†๋„ ๋ฒกํ„ฐ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์ด ํ‘œํ˜„๋œ๋‹ค.

๊ฐ€์†๋„ ๋ฒกํ„ฐ์˜ ํ‘œํ˜„

\\overset{\cdot \cdot}{\overset{\rightarrow}{r_p}^i} ;=;{d\over dt }\overset{\cdot}{\overset{\rightarrow}{r_p}^i};=; {d\over dt}\[\\overset{\cdot}{\overset{\rightarrow}{R}^i};+;\overset{\cdot}{\theta^i}A^i\_{,\theta} \overset{\rightarrow}{\overset{-}{u_p} }^i\]

์ •๋ฆฌํ•˜๋ฉด,

\\overset{\cdot \cdot}{\overset{\rightarrow}{r_p}^i};=; \\overset{\cdot \cdot}{\overset{\rightarrow}{R}^i} -(\overset{\cdot}{\theta^i})^2A^i \overset{\rightarrow}{\overset{-}{u_p} }^i +\overset{\cdot \cdot}{\theta^i}A^i\_{,\theta} \overset{\rightarrow}{\overset{-}{u_p} }^i \\ ;\\ ;=; \\overset{\cdot \cdot}{\overset{\rightarrow}{R}^i}+ \[\\overset{\rightarrow}{\omega}^i\times(\overset{\rightarrow}{\omega}^i\times\overset{\rightarrow}{ {u_p} }^i)\] +\[\\alpha^i \times\overset{\rightarrow}{ {u_p} }^i\]

์—ฌ๊ธฐ์„œ alpha๋Š”,

\\alpha^i;=;\[0;;;;0;;;;\overset{\cdot \cdot}{\theta^i}\]^T

์ด๋‹ค.